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1. INTRODUCTION

In 1992, the U.S. Army will sponsor the workshop on mesoscale model technology
exchange. The workshop will be handled by the MESOMET Panel. The objectives of
the workshop are the following:*

* to identify state-of-the-art technology of mesoscale modeling;

" to inform the scientific community about the availability of Project
WIND (wind in non-uniform domains) data; and

* to serve as a forum for mesoscale modeling technology exchange.

The U.S. Army Atmospheric Sciences Laboratory (ASL) will be assigned to examine
the subset of the outputs that are generated by eight different mesoscale models.

In the last several months, several computer programs to examine and display the
outputs of the mesoscale model to compare with observations, have been developed
by ASL using the output of a mesoscale model HOTMAC (High Order Turbulence Model
for Atmospheric Circulation) (Yamada and Bunker, 1989) and Project WIND Phase I,
Julian days 178-179, data (Cionco, 1990). Programs developed consist of those
displaying horizontal, vertical, and temporal distributions of meteorological
parameters--simulated and observed.

This report describes the methods used to examine model output and show examples
of graphic display. Detailed results of comparisons between model simulation and
observation will be described in the near future. The computer programs are
developed by using the FORTRAN language with the National Center for Atmospheric
Research (NCAR) GKS-Compatible Graphic System. The programs are on the HP
9000/840 computer at ASL.

2. PROJECT WIND DATA AND MODEL SIMULATION

Data used to develop the program was from Project WIND Phase I, covering 24 h
from 0900 l.s.t. of day 178. These measurements consisted of upper-air sounding
data at five locations every 2 h, with a few missing data, and 21 surface station
data. Details of the data set are presented in Cionco (1990).

Model simulation was conducted over terrain as shown in figure 1.** Latitude and
longitude of the southwestern corner of the domain are 39' 11' 04.4" N and 1220
59' 58" W. The terrain heights were represented by grids of 81 by 81 with a unit
grid distance of 2.5 km. The highest and lowest grid points are 2477 and 12 m,
respectively, above sea level. In the figure, numbers represent the locations
of upper-air stations. Meteorological parameters were calculated at every other

grid point (40 by 40) for 16 vertical layers, using HOTMAC. The model was
initialized at 0900 l.s.t. of day 178 using sounding data taken at station 04,
and simulation continued until 0800 l.s.t. of the next day.

*J. E. Harris and R. E. Meyers, 1991, Trip report on meeting of MESOVET Panel

in Bruges, Belgium, 9-10 May 1991 (unpublished).

**Figures are presented at the end of the text.
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In figure lb the locations of surface observations are marked. Surface data
contained windspeed, wind direction, temperature, relative humidity, pressure,
incoming solar radiation, and precipitation. During the 24-h period (between
0900 l.s.t. of day 178 and 0900 l.s.t. of day 179), no precipitation occurred.
Therefore, precipitation data was not examined. Relative humidity data was
converted to dew point by using empirical formulas.

3. DATA INTERPOLATION METHODS

3.1 Upper-Air Data

Generally, most mesoscale models are formulated on terrain-following coordinates,
and meteorological parameters are calculated at particular heights determined by
model design. To compare model output with observation at a desired height, one
must interpolate both model outputs and observed data to the height. Model
output values computed at a grid point most adjacent to an upper-air sounding
station were used for the comparison study.

In HOTMAC model, the following equation is used to define a terrain-following
vertical coordinate.

z* = z - ()
H - zg

where z* and z are the transformed and Cartesian vertical coordinates, respec-

tively; z9 is ground elevation above sea level; H is the material surface top
of the model; and H is the corresponding height in the coordinate. For sim-
plicity, H is specified as

H = H + ZgMax  (2)

where Zgmax is the maximum value of z8. From equation (1), height above ground
H9 can be given as

H H+ zgHz X - Zg (3)H9 = z - zg z"

The author applied both linear interpolation and cubic spline methods to inter-
polate the values of meteorological parameters (horizontal wind components,
temperature, and dew point) at desired height above ground. Few differences were
found in the results produced by the two methods. In the linear interpolation
method, meteorological parameter V at height z can be obtained by using the
values at z i and z, 1+, where z i < z < zi+1 , as follows: (figure 2)

p(z) = A • pi + B • (p . (4)

where
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A = zi - Z (5)

Z - Zi

B - (6)
Zi1 -Z i

The equation for cubic spline interpolation is expressed as

( Z) = A I (pi + B * (pi., + C" ./ + D - 91 i-1 (7)

where

C 1 (A3 - A) (zi I - zi ) 2  (8)
6

D 1 (B 3 - B) (zi. - zi)2 (9)
6

and

d _ p (10)

dz
2

F3RTRAN programs of cubic spline interpolation described in Press et al. (1989)
were used.

3.2 Surface Data

To reduce the value of a meteorological parameter at a surface station k, values
at four grid points surrounding the station were used as

(k = - 1 1 (II)

where the subscript i represents a grid point, ri is the distance between station

location and grid point i, and p is an arbitrary meteorological parameter.

4. SURFACE METEOROLOGICAL PARAMETERS

4.1 Horizontal Distributions of Gridded Data

Plotting horizontal distributions of gridded data of model output is important
to examine distribution patterns of meteorological parameters over the model
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domain and to intercompare between models. Scalar variables such as temperature
and sensible heat flux are plotted by using contour-line drawing routines in the
NCAR GKS-Compatible Graphic System. Horizontal wind vectors are plotted by using
vector drawing routines. In the following figures, (a) and (b) represent daytime
and nighttime conditions for 1500 l.s.t. of day 178 and 0300 l.s t. of day 179,
respectively.

Examples of contour-line plotting of scalar variables are shown in figures 3 and
4. Figures 3a and 3b show air temperature distributions at 10-m levels above
ground. Contour lines are drawn with 5 °C intervals. Terrain contour lines are
also drawn using thin lines. Figure 4 shows the distribution of sensible heat
flux (W/m2). Sensible heat fluxes are upward (positive) throughout the model
domain during the day, and downward (negative) during the night. Upward fluxes
are contoured by solid lines and downward fluxes by broken lines.

Figure lb shows that surface observation stations were in the center of the model
domain. For easier comparison, the right side of figures 5a and 5b show the
horizontal wind vectors computed by the model for the center area only; the left
side shows the observed wind vectors. Upslope wind conditions during the day and
downslope wind conditions during the night were well simulated and in good agree-
ment with observations.

4.2 Comparisons of Simulation with Surface Observation

The computer program developed for comparing simulation with surface observation
takes the following steps:

* determines the locations of surface station in grid coordinate.

* creates time series arrays of meteorological parameters for
points representing surface stations, using data at four grid
points surrounding the surface stations.

The program is designed to plot both simulation and observation for any surface
station desired.

Since the model output file contained hourly data aL gzid points, time series
plotting of both simulated and observed data were also made hourly. Wind direc-
tion and windspeed (meters per second), temperatures (degrees Celsius) at 2- and
10-m levels, dew point (degrees Celsius). and downward shortwave radiation (watts
per square meter) were plotted. As examples, plottings for stations Sl and Cl
are shown, respectively, in figures 6 and 7, with thin lines representing
simulation and thick lines representing observation. These figures show that
shortwave radiation observation data and temperatures at either level were not
available at some stations.

5. UPPER-AIR METEOROLOGICAL PARAMETERS

5.1 Vertical Distributions at the Locations of Sounding Stations

Upper-air data were observed at five stations during the 24-h period. Data were
taken at each station every 2 h, with some exceptions. The program developed to
plot vertical distributions of meteorological parameters extracts data at grid
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points closest to the stations and creates arrays of data for each station. The
program was arranged so plotting could be made for a desired station and time.

Figure 8 shows the vertical distributions of wind direction and windspeed, x and
y components of wind vector, temperature, and dew point for station 01 and 1300
l.s.t. of day 178. Thin and thick lines represent, respectively, simulation and
observation. Figure 9 shows station 04 at 0100 of day 179.

5.2 Time-Series at Different Levels

For comparison between different models, it is convenient to have meteorological
parameters at the same heights. Participants in the workshop of mesoscale model
technology e -nange are asked to produce time series of meteorological parameters
at the following: standard heights 2, 10, 50, 100, 200, 400, 800 m above the
ground and standard pressure levels of 850, 700, 500, and 300 mbar. The HOTMAC
model computed variables at the following 16 levels of terrain-following
coordinates: 0, 2, 6, 10, 14, 28, 114, 281, 530, 861, 1273, 1767, 2342, 3000,
3729, 4559. Thus, interpolation of variables from model height to standard
height was necessary. As described in section 3, a cubic spline interpolation
method was used for interpolation from model heights to standard heights. The
linear interpolation method was used to interpolate to standard pressure level.
In the HOTMAC model, pressure is a diagnostic variable.

The program extracts parameters for grid points most adjacent to upper-air
stations and calculates the values at standard heights or pressure levels.
Observed data were also interpolated by using cubic spline or linear inter-
polation methods. Time series arrays of meteorological parameters for different
station locations and standard levels were generated; therefore, time series of
plotting could be easily made for different stations and levels. Wind direction
and windspeed, temperature, and dew point were plotted.

Figures 10a and 10b show the time series of wind direction and windspeed at seven
different heights for station 03. Continuous lines are used for simulation and
asterisks (*) are used to plot the values of observation. Figures Ila and lilb

show examples of the time series of temperature and dew point.

Time series for three different pressure levels (500, 700, and 850 mbar) are
given in figures 12 and 13. Neither observation nor simulation was available at
the 300-mbar level. Plots for station 03 were used for these figures.

6. EVALUATION OF MODEL PERFORMANCE

Visual comparisons of simulation with observations (as shown in the previous
sections) are useful. However, model performance evaluated quantitativelv is
also desirable since it enables us to compare objectively one model to another
model and to gain insight into the sources of error. For the present simula-
tion. continuous data of wind direction, windspeed, temperature, and humiditv
were available throughout the 24-h period at 21 surface stations: and 4 or 5
upper-air sounding data were available every 2 h. These data were used to

perform the following statistical evaluations.
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6.1 Surface Data

Mean, standard deviation, root mean square errors (rmse), unbiased rmse, and
agreement measure were calculated hourly. Willmott (1981, 1982) and Willmott et
al. (1985) recommend the use of the above statistical parameters to quantita-
tively evaluate model performance. The following equations are definitions of
these parameters:

a. mean

- Zk (k) (12)

where W(k) is meteorological parameters at kth station, and N is the number of
stations. Means for both simulation and observation were calculated. In a good
agreement case, means for both should have similar values.

b. rmse (E) and unbiased rmse (Eub)

E = [ (k) - (k)] 2  (1/2)

E Z [(Opm(k) - - ) - (p (k) - j)] 1/2 (14)

E = k N

If there is a perfect agreement, E and Eub are zero.

c. standard deviation

[1/2 (15)

In a good agreement case, the standard deviation for both simulation and
observation should have similar values.

d. agreement measure

A = I-rk (Op.(k) - (k))16)
,(l (k) - q. I ,o(k) -11)2
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This dimensionless index has a theoretical range of 1.0 (for perfect agreement)

to 0.0 (for no agreement).

These statistical parameters were calculated hourly for wind, temperature, and
dew point. Figure 14 shows the results for wind. Mean wind direction was
calculated from the means of horizontal wind components. Thin lines represent
simulation and thick lines represent observation in the top three portions of
figure 14. In the rmse plotting, Eb was drawn using a thin line and Eu, by using
a thick line. Agreement measure of windspeed was slightly lower during the day-
time than during the night, as mean windspeed showed greater discrepancies during
the day than during the night.

Figure 15 is a similar figure for temperature at the 10-m level. There is a good
agreement between simulation and observation during the day, as can be seen in
mean temperature and agreement measure. Agreement becomes poor during the night,
as the standard deviation of observed temperature is much greater than that of
simulation during the night, probably resulting from the model's incapability of
representing localized effects. The rmse shows also that agreement between simu-
lation and observation becomes poor during the night.

6.2 Upper-Air Data

So far, for upper-air data, the following two statistical parameters were cal-
culated at different levels as a function of time to evaluate model performance.
Different statistical parameters may need further consideration.

a. average difference between observation and simulation

T Eklk, ( t ) - k~m(t) 1 (17)
N

where V represents meteorological parameters, subscripts o and m are for obser-
vation and simulation, and N is the number of observations. 6q0 of horizontal
wind components, speed, temperature, dew point, and pressure were calculated at
different levels every 2 h when observation of upper-air was available. Figures
16 and 17 are for the 10- and 1000-m levels, respectively. At the 10-m level,
the difference of temperature becomes greater during the night, as has been
mentioned in section 6.1. On the other hand, temperature difference at the 1000-
m level did not show great difference at night, probably because temperature at
the 1000-m level was influenced very little by surface heating and cooling. The
average difference of the x component of wind at the 1000-m level grew after
several hours of simulation. In this simulation, the model was initialized at
0900 l.s.t. using upper-air sounding data, and no adjustment was made during
simulation.
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b. correlation coefficient of variance

r(t) = Y-k (8(3k,. 8 (pI'k.M) (18)

where

8 o(t + At) = CP(t + at) - Po(t) (19)

8 t + At) = Vm(t + At) - 9m(t) (20)

6v"/ = 68po - W (21)

8 ml = 8(p - T (22)

Here the overline denotes an average of an entire simulation period. The use of
the correlation coefficient of variance was suggested by the MESOMET panel.

The coefficient r(t) was calculated for meteorological parameters inclIding hori-
zontal wind components, windspeed, temperature, dew point, and pressure at dif-
ferent levels. Figures 18 and 19 show the 10- and 1000-m levels, resnectively.
The values of r(t) vary considerably for all the meteorological p rameters.
Ideas on model performance are difficult to obtain from these figul s. The
correlation coefficient must be done carefully.

7. CONCLUDING REMARKS

This report describes and illustrates computer programs developed for a com-
parison between model simulation and observation by using Project WIND Phase I
day 178 data and the HOTMAC model output. Temporal and spatial comparisons of
simulation with observation can be made by using the program developed.
Statistical parameters described in the report will become meaningful when
different model simulations are compared with observations.
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Figure 10b. Time series of wind direction and windspeed at 100-, 50-, and

10-mn levels for station - 03.
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Figure Ila. Time series of temperature and dew point at 800-, 400-. and
200-rn levels for station -03.
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Figure 13. Time series of temperature and dew point at 500-, 700-, and
850-mbar levels for station - 03.
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Figure 14. Time series of statistical parameters for surface wind data. Mean
wind direction and windspeed, standard deviation, rmse, and agree-

ment measure. In the top three portions of the figure, the thin
lines are for simulation and the thick lines are for observation.
In the fourth portion (rmse), the thin line is for Eb and the thick
is for Eub.
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Figure 15. Time series of statistical parameters for surface (10-rn level) tem-
perature. In the top two portions of the figure, the thin lines are
for simulation and the thick lines are for observation. In the third
portion, the thin line is for Eb and the thick line is for Eub.
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Figure 16. Time series of average differences between observation and simulation
for horizontal wind vector components, speed, temperature, dew point,
and pressure at the 10-m level.
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Figure 17. Time series of average differences between observation and simulation
for horizontal wind vector components, speed, temperature, dew point,

and pressure at the 1000-i level.
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Figure 18. Time series of correlation coefficients of horizontal wind vector
components, speed, temperature, dew point, and pressure for the 10-in

level.
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Figure 19. Time series of correlation coefficients of horizontal wind vector
components, speed, temperature, dew point, and pressure for the
1000-m level.
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